Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Intervalo de año de publicación
1.
Plant J ; 96(4): 801-814, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30118573

RESUMEN

Drought stress is one of the most severe environmental constraints on plant production. Under environmental pressures, complex daily heliotropic adjustments of leaflet angles in soybean can help to reduce transpiration losses by diminishing light interception (paraheliotropism), increase diurnal carbon gain in sparse canopies and reduce carbon gain in dense canopies by solar tracking (diaheliotropism). The plant materials studied were cultivar BR 16 and its genetically engineered isoline P58, ectopically overexpressing AtDREB1A, which is involved in abiotic stress responses. We aimed to follow the movements of central and lateral leaflets in vegetative stages V7-V10 and reproductive stages R4-R5, integrating the reversible morphogenetic changes into an estimate of daily plant photosynthesis using three-dimensional modeling, and to analyze the production parameters of BR 16 and P58. The patterns of daily movements of central leaflets of BR 16 in V7-V10 and R4-R5 were similar, expressing fewer diaheliotropic movements under drought stress than under non-limiting water conditions. Daily heliotropic patterns of lateral leaflets in V7-V10 and R4-R5 showed more diaheliotropic movements in drought-stressed P58 plants than in those grown under non-limiting water conditions. Leaf area in R4-R5 was generally higher in P58 than in BR 16. Drought significantly affected gas exchange and vegetative and reproductive architectural features. DREB1A could be involved in various responses to drought stress. Compared with the parental BR 16, P58 copes with drought through better compensation between diaheliotropic and paraheliotropic movements, finer tuning of water-use efficiency, a lower transpiration rate, higher leaf area and higher pod abortion to accomplish the maximum possible grain production under continued drought conditions.


Asunto(s)
Glycine max/genética , Proteínas de Soja/genética , Estrés Fisiológico/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Fotosíntesis/genética , Desarrollo de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Soja/metabolismo , Glycine max/metabolismo
2.
PLoS One ; 12(11): e0187920, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29145496

RESUMEN

Soybean (Glycine max) is one of the major crops worldwide and flooding stress affects the production and expansion of cultivated areas. Oxygen is essential for mitochondrial aerobic respiration to supply the energy demand of plant cells. Because oxygen diffusion in water is 10,000 times lower than in air, partial (hypoxic) or total (anoxic) oxygen deficiency is important component of flooding. Even when oxygen is externally available, oxygen deficiency frequently occurs in bulky, dense or metabolically active tissues such as phloem, meristems, seeds, and fruits. In this study, we analyzed conserved and divergent root transcriptional responses between flood-tolerant Embrapa 45 and flood-sensitive BR 4 soybean cultivars under hypoxic stress conditions with RNA-seq. To understand how soybean genes evolve and respond to hypoxia, stable and differentially expressed genes were characterized structurally and compositionally comparing its mechanistic relationship. Between cultivars, Embrapa 45 showed less up- and more down-regulated genes, and stronger induction of phosphoglucomutase (Glyma05g34790), unknown protein related to N-terminal protein myristoylation (Glyma06g03430), protein suppressor of phyA-105 (Glyma06g37080), and fibrillin (Glyma10g32620). RNA-seq and qRT-PCR analysis of non-symbiotic hemoglobin (Glyma11g12980) indicated divergence in gene structure between cultivars. Transcriptional changes for genes in amino acids and derivative metabolic process suggest involvement of amino acids metabolism in tRNA modifications, translation accuracy/efficiency, and endoplasmic reticulum stress in both cultivars under hypoxia. Gene groups differed in promoter TATA box, ABREs (ABA-responsive elements), and CRT/DREs (C-repeat/dehydration-responsive elements) frequency. Gene groups also differed in structure, composition, and codon usage, indicating biological significances. Additional data suggests that cis-acting ABRE elements can mediate gene expression independent of ABA in soybean roots under hypoxia.


Asunto(s)
Genes de Plantas , Glycine max/genética , Oxígeno/metabolismo , Estrés Fisiológico , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Glycine max/fisiología
3.
Front Plant Sci ; 8: 448, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28443101

RESUMEN

Drought is one of the most stressful environmental factor causing yield and economic losses in many soybean-producing regions. In the last decades, transcription factors (TFs) are being used to develop genetically modified plants more tolerant to abiotic stresses. Dehydration responsive element binding (DREB) and ABA-responsive element-binding (AREB) TFs were introduced in soybean showing improved drought tolerance, under controlled conditions. However, these results may not be representative of the way in which plants behave over the entire season in the real field situation. Thus, the objectives of this study were to analyze agronomical traits and physiological parameters of AtDREB1A (1Ab58), AtDREB2CA (1Bb2193), and AtAREB1 (1Ea2939) GM lines under irrigated (IRR) and non-irrigated (NIRR) conditions in a field experiment, over two crop seasons and quantify transgene and drought-responsive genes expression. Results from season 2013/2014 revealed that line 1Ea2939 showed higher intrinsic water use and leaf area index. Lines 1Ab58 and 1Bb2193 showed a similar behavior to wild-type plants in relation to chlorophyll content. Oil and protein contents were not affected in transgenic lines in NIRR conditions. Lodging, due to plentiful rain, impaired yield from the 1Ea2939 line in IRR conditions. qPCR results confirmed the expression of the inserted TFs and drought-responsive endogenous genes. No differences were identified in the field experiment performed in crop season 2014/2015, probably due to the optimum rainfall volume during the cycle. These field screenings showed promising results for drought tolerance. However, additional studies are needed in further crop seasons and other sites to better characterize how these plants may outperform the WT under field water deficit.

4.
Transgenic Res ; 23(1): 75-87, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23807320

RESUMEN

The development of drought tolerant plants is a high priority because the area suffering from drought is expected to increase in the future due to global warming. One strategy for the development of drought tolerance is to genetically engineer plants with transcription factors (TFs) that regulate the expression of several genes related to abiotic stress defense responses. This work assessed the performance of soybean plants overexpressing the TF DREB1A under drought conditions in the field and in the greenhouse. Drought was simulated in the greenhouse by progressively drying the soil of pot cultures of the P58 and P1142 lines. In the field, the performance of the P58 line and of 09D-0077, a cross between the cultivars BR16 and P58, was evaluated under four different water regimes: irrigation, natural drought (no irrigation) and water stress created using rain-out shelters in the vegetative or reproductive stages. Although the dehydration-responsive element-binding protein (DREB) plants did not outperform the cultivar BR16 in terms of yield, some yield components were increased when drought was introduced during the vegetative stage, such as the number of seeds, the number of pods with seeds and the total number of pods. The greenhouse data suggest that the higher survival rates of DREB plants are because of lower water use due to lower transpiration rates under well watered conditions. Further studies are needed to better characterize the soil and atmospheric conditions under which these plants may outperform the non-transformed parental plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Sequías , Glycine max/genética , Factores de Transcripción/genética , Adaptación Fisiológica/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/crecimiento & desarrollo , Glycine max/crecimiento & desarrollo , Agua/metabolismo
5.
PLoS One ; 8(5): e62294, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23667465

RESUMEN

Soybean farming has faced several losses in productivity due to drought events in the last few decades. However, plants have molecular mechanisms to prevent and protect against water deficit injuries, and transcription factors play an important role in triggering different defense mechanisms. Understanding the expression patterns of transcription factors in response to water deficit and to environmental diurnal changes is very important for unveiling water deficit stress tolerance mechanisms. Here, we analyzed the expression patterns of ten APETALA2/Ethylene Responsive Element Binding-like (AP2/EREB-like) transcription factors in two soybean genotypes (BR16: drought-sensitive; and Embrapa 48: drought-tolerant). According to phylogenetic and domain analyses, these genes can be included in the DREB and ERF subfamilies. We also analyzed a GmDRIP-like gene that encodes a DREB negative regulator. We detected the up-regulation of 9 GmAP2/EREB-like genes and identified transcriptional differences that were dependent on the levels of the stress applied and the tissue type analyzed (the expression of the GmDREB1F-like gene, for example, was four times higher in roots than in leaves). The GmDRIP-like gene was not induced by water deficit in BR16 during the longest periods of stress, but was significantly induced in Embrapa 48; this suggests a possible genetic/molecular difference between the responses of these cultivars to water deficit stress. Additionally, RNAseq gene expression analysis over a 24-h time course indicates that the expression patterns of several GmDREB-like genes are subject to oscillation over the course of the day, indicating a possible circadian regulation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Agua/metabolismo , Secuencia de Aminoácidos , Sequías , Evolución Molecular , Genotipo , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Estructura Terciaria de Proteína , Glycine max/fisiología , Factores de Transcripción/química
6.
Genet Mol Biol ; 35(1 (suppl)): 304-14, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22802715

RESUMEN

Soybean has a wide range of applications in the industry and, due to its crop potential, its improvement is widely desirable. During drought conditions, soybean crops suffer significant losses in productivity. Therefore, understanding the responses of the soybean under this stress is an effective way of targeting crop improvement techniques. In this study, we employed the Suppressive Subtractive Hybridization (SSH) technique to investigate differentially expressed genes under water deficit conditions. Embrapa 48 and BR 16 soybean lines, known as drought-tolerant and -sensitive, respectively, were grown hydroponically and subjected to different short-term periods of stress by withholding the nutrient solution. Using this approach, we have identified genes expressed during the early response to water deficit in roots and leaves. These genes were compared among the lines to assess probable differences in the plant transcriptomes. In general, similar biochemical processes were predominant in both cultivars; however, there were more considerable differences between roots and leaves of Embrapa 48. Moreover, we present here a fast, clean and straightforward method to obtain drought-stressed root tissues and a large enriched collection of transcripts expressed by soybean plants under water deficit that can be useful for further studies towards the understanding of plant responses to stress.

7.
Braz. arch. biol. technol ; 52(6): 1321-1331, Nov.-Dec. 2009. ilus, tab, graf
Artículo en Inglés | LILACS | ID: lil-539098

RESUMEN

In a greenhouse experiment, morpho-anatomical and micromorphometrical analyses of two soybean cultivars, MG/BR46 (Conquista) and BR16-tolerant and sensitive to drought, respectively-were used to study their water-deficit-tolerance strategies. Drought treatments were applied at reproductive stages from R2 to R7, where evaluations were conducted at 30 days and 45 days after stress started, respectively. The total length of Conquista plants (shoot + root) was greater than of BR16 plants. Pod dry weight was adversely affected due to the lack of moisture, decreasing productivity even of Conquista plants. Both the cultivars had normal development of root hairs; however, it was observed a decrease in the cortex:central cylinder ratio in BR16 stressed for 30 days, and they also showed similar leaflet thickness and stomata distribution. Differences in drought tolerance observed between the two cultivars seemed to be related to factors other than morphological traits since this species has a short lifecycle.


Análises morfo-anatômicas e micromorfométricas de duas cultivares de soja, MG/BR46 (Conquista) e BR16—tolerante e sensível à seca, respectivamente, em experimento conduzido em casa de vegetação—foram feitas para estudar as diferentes estratégias de tolerância ao déficit hídrico. Tratamentos de seca foram aplicados no estádio reprodutivo R2 e R7, onde avaliações foram conduzidas em 30 dias e 45 dias após o inicio do estresse, respectivamente. O comprimento total das plantas da cultivar Conquista (parte aérea e raiz) foi maior do que das plantas da cultivar BR16. A massa seca da vagem foi adversamente afetada pelo déficit hídrico, diminuindo a produtividade das plantas da cultivar Conquista. Ambas as cultivares tiveram o desenvolvimento de pêlos radiciais normais e, uma diminuição da razão córtex:cilindro central foi observada em BR16 estressada por 30 dias, além de apresentar uma espessura do folíolo e distribuição dos estômatos normais. Diferenças na tolerância à seca observada entre as duas cultivares devem estar relacionadas também a outros fatores, alm das características morfológicas, já que esta espécie possui um ciclo de vida curto.

8.
Genet Mol Res ; 3(4): 474-82, 2004 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-15688314

RESUMEN

A lack of pliant software tools that support small- to medium-scale DNA sequencing efforts is a major hindrance for recording and using laboratory workflow information to monitor the overall quality of data production. Here we describe VSQual, a set of Perl programs intended to provide simple and powerful tools to check several quality features of the sequencing data generated by automated DNA sequencing machines. The core program of VSQual is a flexible Perl-based pipeline, designed to be accessible and useful for both programmers and non-programmers. This pipeline directs the processing steps and can be easily customized for laboratory needs. Basically, the raw DNA sequencing trace files are processed by Phred and Cross_match, then the outputs are parsed, reformatted into Web-based graphical reports, and added to a Web site structure. The result is a set of real time sequencing reports easily accessible and understood by common laboratory people. These reports facilitate the monitoring of DNA sequencing as well as the management of laboratory workflow, significantly reducing operational costs and ensuring high quality and scientifically reliable results.


Asunto(s)
Sistemas de Administración de Bases de Datos , Análisis de Secuencia de ADN/normas , Programas Informáticos/normas , Sistemas de Administración de Bases de Datos/normas , Humanos , Control de Calidad , Análisis de Secuencia de ADN/métodos
9.
Genet. mol. res. (Online) ; 3(4): 474-482, 2004. ilus
Artículo en Inglés | LILACS | ID: lil-410892

RESUMEN

A lack of pliant software tools that support small- to medium-scale DNA sequencing efforts is a major hindrance for recording and using laboratory workflow information to monitor the overall quality of data production. Here we describe VSQual, a set of Perl programs intended to provide simple and powerful tools to check several quality features of the sequencing data generated by automated DNA sequencing machines. The core program of VSQual is a flexible Perl-based pipeline, designed to be accessible and useful for both programmers and non-programmers. This pipeline directs the processing steps and can be easily customized for laboratory needs. Basically, the raw DNA sequencing trace files are processed by Phred and Cross_match, then the outputs are parsed, reformatted into Web-based graphical reports, and added to a Web site structure. The result is a set of real time sequencing reports easily accessible and understood by common laboratory people. These reports facilitate the monitoring of DNA sequencing as well as the management of laboratory workflow, significantly reducing operational costs and ensuring high quality and scientifically reliable results.


Asunto(s)
Humanos , Análisis de Secuencia de ADN/normas , Programas Informáticos/normas , Sistemas de Administración de Bases de Datos/normas , Control de Calidad , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...